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Abstract 

Feynman's  path-integral quantum-mechanical formulation is generalised for particles of  
spin ~. In the one-particle case, the path-integral formulation uses paths in a Euclidean 
real five-dimensional space, two coordinates (u, v) being reserved for spin. The path 
integral is proven to correspond exactly to the Pauli equation. A canonical density-matrix 
formulation is also dealt with. Basic ideas are to start with differential spin operators 
instead of  the Pauti matrices and apply them to functions ,t, = ~ 1 (r, t)u + ~ z(r, t)v where 

1, ff z are the Pauli wave functions. Then a 'n i lpotent '  spin 'kinetic-energy' term is added 
to the Hamiltonian. This enables us to find a non-matrix spin-dependent Lagrangian which 
is used as usual in the action of  a path  integral o f  the Feynman type.  Integral relations are 
derived f rom which the path integral can be transformed into components  of  the Pauti 
matrix Green's function (propagator) or the canonical density matrix. As an example, a 
path-integral calculation of  the normal Zeeman splitting is carried out. 

t. Introduction 

The subject of this article is a quantum-mechanical description of a charged 
particle of spin ½ in an electric field E(r, t) and magnetic field B(r, t) by means 
of a continual integral of the Feynman type (Feynman, 1948; Feynman & 
Hibbs, 1965). Simultaneously, for static fields E(r), B(r), we shall also deal 
with a density matrix formulation, paying attention to a gas of identical non- 
interacting boltzons (e.g. in a box) at thermodynamic equilibrium. 

1.1. Basic Concepts 

To introduce the subject, let us consider, at first, a spinless particle or, 
more generally, a spinless system with d degrees of freedom. The Feynman 
continual (path) integral represents a compact description of Green's function 
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G(Q, Qo, t) for the Schr6dinger equation which may be written in the integral 
form 

~(Q, t) = f ddQoG(Q, Qo, t)¢(Qo, 0) (1.1.I) 

where Q, Qo are positional vectors from a d-dimensional coordinate space, S a, 
and t > 0 is the time variable. According to Feynman's definition, we may 
dissect the time interval (0, t) into N equal sub-intervals, define infinitesimal 
classical actions Si, j+I for each of them (] = 0, 1 . . . .  N - 1) and write the 
Green function as the infinitely multiple integral 

N - - 1  
G(Q, Qo, t) = lira ~4~(t) I~ ~ ddai  exp (iSi, j+l) (1.1.2) 

N - - , ~  j = l  __~ 

(QN = Q, h = 1). The factor J~(t) is independent of the points Q, Qo, and is 
determined by the condition 

G(Q, Qo, + O) = ~ d ( q  _ Qo) (1.1.3) 

tf the metric of the space Sd is Euclidean and L(Q, Q, t) denotes the classical 
Lagrangian corresponding to the Hamiltonian of equation (1.1.1), then the 
actions Sj, j+ I used in the continual integral (1.1.2) may be defined by the 
interpolation formula 

SLj+ 1 =L(½(Qj+Qj+,),(Qi+ 1 - Qi)N/t, t iN)tiN (1.1.4) 

As long as all the actions S L j+ 1 mutually commute, we may also write, accord- 
ing to Feynman, the Green function (1.1.2) in the form 

Q , t  t 

G(Q, Qo, t) =./if(t) f ~Q( r )  exp{i f dTL(Q(r), Q0"), r)} (1.1.5) 
Qo, O 0 

(t > 0) so that the name 'path integral' for the functional integral (1.1.5) due 
to the use of the paths Q(~-) (Q(0) = Qo, Q(t) = Q), is doubly emphasised 
owing to the actual presence of the path integral in the exponent. 

1.2. Different ContinuaI-Integral Approaehes to the Problem of  Spin 

Throughout this paper we will confine ourselves to the problem of spin as 
the proper dynamical variable and will not have in mind any question of statis- 
tics, although they are, of course, related to our problem (Klauder, t960). 

There are several ways how spin may be incorporated into continual integ- 
rals of the Feynman type. The first was suggested by Feynman himself 
(Feynman, 1948) and consists, for the case of a particle of spin ½, of com- 
pleting the classical action Si, j+I by a term involving the Pauli matrices. The 
exponential expressions exp (iSj, i + a ) become 2 x 2 matrices which cease to 
commute if the magnetic field is either non-uniform in space or varying in 
time. The disappearance of the most captivating and useful property of the 
Feynman continual integral, namely the commutability of all the entities 
occurring in it, is an uncomfortable defect. Although we may use definition 
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(1.1.2) in this case, we must keep in mind that the exponential expressions 
exp (iS], j + 1) must not be mutually exchanged. O f course, the transition to 
formula (1.1.5) is then not allowed and that is why Feynman considered his 
own path-integral formulation as inconvenient for particles with spin (Feynman 
& Hibbs, 1965). 

If we do wish to use the path integral in the form (1.1.5), we may do so, but 
after putting a time-ordering operator in front of it. Moreover, Hamilton & 
Shulman (1971) have shown that the use of the time-ordering operator is 
identical to using a rather old mathematical concept of the so-called product 
integrals. 

Furthermore, owing to the analogy between Feynman's continual integrals 
and the functional integrals introduced by Wiener in his well-known study of 
the Brownian motion, one could easily foresee that much of the hitherto 
existing mathematical armament having been developed in the theory of the 
Wiener processes would also be applicable in quantum mechanics. We can 
quote, for instance, Garczynski, who elaborated a theory of quantum Markov 
processes and within its framework has published a paper devoted to spin 
(Garczynski, 1973). Again, a crucial attribute of his formulation is the use of 
the time-ordering operator. (We are also aware of another stochastic theory of 
spin-actually a theory of the Pauli equation-due to de la Pefia-Auerbach 
(197 t) whose formalism, however, is not based on Feynman's continual inte- 
grals or any similar concepts at all and is, therefore, only indirectly connected 
with our subject.) 

Recently Petr~ff (private communication) has succeeded in formulating a 
new, interesting approach to the problem of spin, having dealt with a path- 
integral analysis of a charged point particle. He has simwn that the Pauii 
equation results naturally from a path-integral theory where the finite-product 
approximations of some path integral are due to paths combined from circular 
(and, in general, even more complicated curvilinear) segments instead of the 
common straight-line sections used in definition (1.1.2). 

The best known path-integral approach to the problem of spin to which our 
path-integral approach particularly refers is due to Shulman (1968). The 
Green function of his symmetric spinning top is a direct analogy to the prob- 
ability distribution function investigated in the theory of the rotational Brown- 
ian motion (Valiev & Ivanov, 1973) and represents a sum of contributions due 
to all the quantum numbers of the angular momentum. It is clear then that 
Shulman's Green function necessarily bears a high redundancy of information 
in the case of a particle with a concrete prescribed spin since it involves terms 
due to all other spins allowed for a classical top (½, 1, ~, 2 , . . . ) .  The basic idea of 
Shulman's conception is the use of paths in a composite space R 3 x SO(3), 
where R 3 is the common real three-dimensional space and SO(3) the quotient 
space induced by the three-dimensional irreducible representation of the 
group of rotations. In consequence of such a choice of the coordinate space, 
Shulman's theory bears two features whicl~ make it so sophisticated: the space 
R 3 x SO(3) is both multiply connected and curved so that the simple definition 
(1.1.4) of the actions S L i + 1 is insufficient. 
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None of these features will occur in our formulation described in the 
present paper. Our expression is tailored right to particles of  spin ½ and does 
not carry information about other spins. In our formulation we use a real 
Euclidean space (whose metric is trivial) instead of R 3 x SO (3). Our coordi- 
nate space is five-dimensional in the one-particle case, two dimensions being 
reserved for spin. (A generalisation-whose discussion, however, will not be 
treated in this paper - i s  also possible where the coordinates due to the spin 
subspace are not real, as in the present formulation, but complex, so that four 
dimensions may be reserved for spin.) For our expression it is sufficient to use 
definition (1.1.2) with the actions Sj, j+I given by formula (1.1.4). Thus, in the 
case of  multiple-integral approximations of  Green's function, we have in mind 
broken paths rectified by straight-line sections. Finally, as there are only com- 
muting entities in our Green's function, we need not use any time-ordering 
operation. 

To develop our formulation, we commence with a purely differential 
representation of  the Pauli equation which is defined in Section 2. Instead of 
directly using the Pauli spinor functions, we combine their components  
~ l ( r ,  t), ~2(r,  t) into bilinear forms ~ l u  + if2 v where u, v are formal coordi- 
nates reserved for spin in our five-dimensional space. Our basic idea is to add a 
'nilpotent '  kinetic-energy term - ~ 2/~u 2 _ ~ 2/~ v 2 into the Hamiltonian. 

Although the addition of such a nilpotent operator is the same as adding 
zero to the Hamiltonian (hence the prefix 'nil'), a vital kinetic-energy term 
corresponds to it in the Lagrangian. The Green function derived as a path 
integral with respect to paths in the space {r, u, v} can be transformed by 
simple integral formulae into the matrix components of  Green's function in 
the usual Pauli matrix representation. 

In order to verify the direct use of  our conception on a simple example, we 
shall also present, in an appendix, a path integral calculation of  the Zeeman 
splitting in a uniform time-independent magnetic field. 

2. Basic Analysis 

2.1. The Purely Differential Representation o f  the Pauli Equation 

The standard Pauli equation for a particle of  spin ½, charge e and mass m, 
with using units when h = c = 1, reads 

a'I'e(r, t) 
i - -  = HP'I*/'(r, t) (2.1.1) 

3t 

where 

1 e 
HP = ~-m (t3 - eA(r, t))2I + e~0(r, t ) I  - ~ m  B(r, t ) .  o (2.1.2) 
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Beside the differential operator ~ = --iV, the Hamiltonian H P involves the 
matrix spin operator a whose componentsare 

and the unit matrix |. We have written on purpose the suffix P with the 
Hamiltonian and the two-component wave function 

• P(r, t) = ( ~ ' ( r '  t) ] (2.1.4) 
t)/ 

in order to emphasise that they are defined in the Pauli matrix representation. 
The functions ~0(r, t), A(r, t) are the scalar and vector potential, respectively, 
related to the electric and magnetic field, 

E(r, t) = -V~(r ,  t) - 0A(r, t) 
at ' B(r , t )=  VxA( r , t )  (2.t.5) 

In analogy to equation (1.1. t), we can rewrite the Pauli equation in the integral 
form 

'I'e(r, t) = f d3roGe(r, ro, t)'I'e(r0, 0) (2.1.6) 

whose kernel Ge(r, to, t) is a 2 x 2 matrix, 

r , t" = / G n ( r ,  ro, t) G12(r, ro, t) t (2.1.7) 
GP( r, o ) ~G21(r, ro, t) G22(r, ro, t) ] 

In the special case when the potentials % A are time-independent, we may also 
write the stationary-state equation 

HP~P(r) = En~ne(r) (2.1.8) 
where 

• n ' ( r)  = (~ln(r) t  (2.1.9) 

Assuming, for simplicity, that all the states XPnP are discrete (situating the 
particle in a box, say), we may consider the normalisation 

fdar[I ~l,(r)[  2 + [ qJ2,(r)[2] = 1 (2.1.10) 

and write Green's function (2.1.7) as the sum 

GP(r, ro, t) = ~ 'I ' ,e(r) 'I ,f+(ro) exp (-iE, t) (t > 0) (2.t .11) 
n 

over the complete set of the eigenstates XI'nP(r). For the components of Green's 
function (2.1.7), we have the relations 

Guv(r, ro, t)= ~ ~un(r)~vn(ro)exp(-iEnt); /~,v= 1,2 
n (2.1.1 la) 
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Obviously, Green's function (2.1.7) fulfils the initial condition 

GP(r, r e + 0) = 63(r - ro)I (2.1.12) 

For time-independent potentials ~, A, we may also define the one-particle 
canonical density matrix for a temperature T: 

CP(r, re,/3) = ~ 'ISnP(r)q/h°+(ro) exp (-/3En), 
n 

/3 = 1/kBT 
(2.1.13) 

(2.1.15) 

or 

C/~v(r, go, ~) = ~ * ~,n(r) Gn(ro) exp ( - / 3 E n ) .  ~.  ~ = 1 . 2  

n (2.1.13a) 

The canonical density matrix is the finite solution of  the equation 

~CP(r, ro,~) [ t e ] p 
= C (r, ro, ~) 0/3 ~-m (p - eA(r))2 + e~p(r) - ~ m  B(r ) .o  

(2.1. t 4) 

for/3 > O, satisfying the 'initial' condition 

CP(r, r o, +0) = g3(r - ro)I 

Comparing formulae (2.1.1 I) and (2,1.13), we state the validity of  the 
relations 

GP(r, r o, t) = CP(r, r o, it), CP(r, ro,/3) = GP(r, ro,-i /3) (2.1.16) 

The trace of  the canonical density matrix (2.1.13) represents the partition sum 
for a gas of identical particles of charge e and mass m, provided that one may 
neglect any interaction between the particles: 

Z(/3) = Tr CP(r, r o,/3) = fcl3r[Cl~(r, r,/3) + C22(r, r, t3)] 

= ~ exp (-/3En) (2.1.17) 
n 

If we know the function Z(/3) we can, in principle, calculate any thermodyn- 
amic quantity of  the gas, as well as the energy-level density. 

Now, our first step is to exclude the 2 x 2 matrices from the theory. To 
achieve this, let us introduce a functional space L2 spanned by the functions 

@(Q, t) = ffl(r ,  t)u + ~2(r, t)v (2 . I . I8)  

where ffl (r, 0 ,  ~2(r, t) are components of the Pauli spinor functions (2.1.4) 
and u, v are two formal real variables. The only property which we require of  
the variables u, v is that they are mutually independent, as well as independent 
o f r  and t, and span the whole real axis, We may then define a five-dimensional 
space S s of  vectors Q = (r, u, v). Of course, the functions ff~(Q, t) @ L 2 are no 
proper quantum-mechanical wave functions (since they are not  quadraticaIly 
integrabte in Ss) but are uniquely related to them by the Pauli functions 
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~l(r ,  t), ff2(r, t). As far as we consider functions from the space L> we can 
introduce the following differential equivalents to the matrices ~rx, ~ry, ~rz: 

- -  + U - -  ~ y  = i V - -  U ~rz = U o u  Ov  6 ~  = v O u  ~ v  ' 7 u  - -  - v - -  

(2.1.19) 

Instead of the unit matrix i we may use the operator i = u O/Ou + v O/Ov or 
simply unity. Here it is pertinent to recollect that similar operators occur in 
the theory of spinor invariants (Brinkman, 1956) due to Kramers where, how- 
ever, u, v are complex components of spinors. No such meaning may be ascribed 
to our variables u, v (in the present paper at least) which we let represent two 
auxiliary real parameters without giving them physical meaning. They are 
merely taken as corresponding to the indices 1 and 2, nothing else. Thus, to 
avoid any misunderstanding, it should be pointed out that if any rotation is 
applied the real variables u, v are, by definition, intact whilst both the spatial 
coordinates x, y,  z are subject to some transformation and the complex values 
ffl, if2 are transformed like spinor components, ff] = aft1 + bff2, ff~ = 
- b * f f l  + a*~b2. (Of course, if the variables u, v themselves were considered as 
components of some spinor, we could then consider a transformation u, v -~ 
u', v'; then, however, necessarily the variables u, v should be, in general, com- 
plex-a property from which we wish to refrain in the present paper.) The 
actual physical meaning is obviously hidden in the Pauli wave functions 

1 (r, t), ff 2 (r, t). 
The space L2 is invariant with respect to the algebra of operators ox, gry, 

Oz, I ,  i.e. if any linear combination of any product of these operators is applied 
to any function from L 2 the result is again a function from L2. Let us take, 
for instance, the product 

~x6y = i V2 ~U2 - U2 - -  + U ~ 2 v 0 

Operators like v2(O2/au2) - uZ(~2/~v2), which give zero when applied to any 
function from L2, may be called 'additionally nilpotent' with respect to the 
space L> If we delete additionally nilpotent operators, we can write the 
relations 

~rx@ = -@~rx  = iOz, . . . (cyclic permutations of  x, y ,  z )  (2.1.20) 

whi@ mean, in fact, that the algebra of the differential operators ox, ey, ez 
and I is isomorphic to the algebra of the matrices ax, ay, az, I. Therefore, for 
functions (2.1.18), i.e. ~(Q,  t) E L2,  we may rewrite the Pauli equation (2.1.1) 
into the purely differential form 

Oq" (Q, t) 
i - -  =/Iq'(Q, t) (2.1.21) 

3t 
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t e 
/ t  = ~ m  (t3 - eA(r,  t)) 2 + e~o(r, t) - ~mm B(r, t ) .  (2.1.22) 

where b is the vector operator with components bx, by, 6z given by formulae 
(2.1.19). Physically, of course, equation (2.1.21) does not give anything new 
and is only another compact formulation of the same two differential 
equations (given after equalising, respectively, the coefficients at u and v on 
both sides of equation (2.1.21)) for the Pauli functions ~ l(r, t), ~02(r, t) which 
are also given by equation (2.1.1) 

The integral form o f equation (2.1.21) re ads 

q(Q, t )=f  dSQoG(Q, Qo, t)~(Qo, 0) (2.1.23) 

where G(Q, Qo, t) is a function defined for t > 0 which must satisfy the 
condition 

G(Q, Qo, +0) = 53(r - ro)8 (u - uo)f(v - vo) (2.1.24) 

Analogically to relations (2 .1 .16) ,  we may also de fine the function C(Q, Qo, 13) 
for13 > 0 :  

G(Q, Qo, t)=C(Q, Qo, it), C(Q, Qo,3)=G(Q, Qo,-13) (2.1.25) 

For 13 -~ +0 we have the condition 

C(Q, Qo, +0) = 63(r - ro)5 (u - Uo)8 (v - Vo) (2.1.26) 

It should be pointed out that the functions G(Q, Qo, t), C(Q, Qo, t3) cannot 
more be represented by sums of the form (2.1.11), (2.1.13), respectively, since 
the functions ~ln(r)u + ~2n(r)v do not form an orthonormal set. Moreover, 
the function C(Q, Qo, 13) does not mean any density matrix at all. Nevertheless, 
after comparing equations (2.1.23) mid (2.1.25) with equations (2.1.6) and 
(2.i.16), we obtain the following relations: 

Oil (r ,  ro, 0 = ~ 
~ o o  

Glz(r, ro, t) = ; I  
- - o o  

du o dvo ~u G(Q, Qo, t) u° 

duo dvo ~ G(Q, Qo, t)Vo 

,,= 

G22(r, ro, t) = j j  duo dvo ~ G(Q, Qo, t)Vo 
u u  

. - -  e ~ a  

(2.1.27) 
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C l l ( r ' r ° ' ~ )  = ;I du° dv° ~u C(Q' QO'J3)u° 
- - o o  

329 

- - o 0  

C22(r, ro,/3) = duo dye "~v C(Q, Qo, ~)Vo 
- - c : o  

(2.1.28) 

Thus, if we know the function G(Q, Qo, t) or C(Q, Qo, ~3) we can calculate the 
components Guv(r , r-o, t), Cur(r, to,/3) of Green's function or the canonical 
density matrix in the Pauli matrix representation. In particular, according to 
formula (2.1.17), the partition sum Z(/3) is given by the integral formula 

Z(/3)=fd3r duo+o Uo 0- +Oo C(Q, Qo,/3)/,=, 
(2.1.29) 

Let us finally note that the functions G(Q, Qo, t), C(Q, Qo,/3) do not belong- 
as conditions (2.1.24) and (2.1.26) must be satisfied, respectively-to the 
space L2, although, by definition, ~(Q, t) @ L> 

In the next section we shall show that the functions G(Q, Qo, t), C(Q, Qo,/3) 
can be calculated as path integrals of the Feynman type. 

2.2. The Spin-Dependent Path Integral 
To derive a path integral corresponding to the function G(Q, Qo, t), let us 

add the nilpotent operator 

Tnil- 1 (  32 ~-~-) 
2m o ~--u~ + , m ° > 0  (2.2.1) 

to the Hamiltonian (2.1.22). The operator (2.2.1) provokes some association 
with a kinetic-energy operator of a symmetric top although it means actually 
'nothing' (nil) physically when applied, together with the operator (2.1.22), to 
any function q~(Q, t) E L2. (Of course, we could also use a more general 
operator, - 1/(2ml) ~2/~u2 - 1/(2m~) 32/3vZ, instead of (2.2.1) but it 
would be, as it seems at least from the viewpoint of simplicity, superfluous, 
similarly as in Shulman's formulation there was no evident advantage to con- 
sider an asymmetric top (Shulman, 1968).) 

One can easily see, by consulting equations (2.1.23) and (2.1.25), that the 
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functions G(Q, Qo, t), C(Q, Qo,/3) may be defined, for any value m ° > 0, as 
the finite solutions for t > 0,/3 > 0, of the equations 

. ~3G(Q, Qo, t) _ (7"nn +/))G((2, Qo, t) (2.2.2) 1 
at 

aC(Q, Qo,/3) = d'nil + [I)C(Q, Qo, ~) (2.2.3) 
a/3 

with the initial conditions (2.1.24) and (2.1.26), respectively. 
The real parameter m ° may be arbitrary but must necessarily be positive 

since otherwise the function C(Q, Qo, ~) would not be finite for Q 4= Qo, 
~ +0. As the parameter m ° is only occurring with a nilpotent, i.e. non- 

physical operator, the functions G u v, Cur (cf. (2.1.27) and (2.1.28) that bear 
the proper physical information are independent of m ° despite the m °- 
dependence of the functions G(Q, Qo, t), C(Q, Qo,/3) induced by equations 
(2.2.2) and (2.2.3). (This is also in agreement with Shulman's formulation 
where the projection of his multispin Green function into the subspace of 
states corresponding to a given spin is independent of the momentum of 
inertia of his classical top (Shulman, 1968).) 

Desiring to have our space Ss Euclidean, we define two operators of 'spin 
momenta': 

a 
/3 u = - i  2----, Pv = - i  (2.2.4) 

~v OU 

Then, with respect to formulae (2.1.19), we may write the Hamiltonian of 
equations (2.2.2) and (2.2.3) in the form 

Tnil + H = - -  ÷ + e~(r, t) 
2m 2m ° 

e 2 
- e [ ~  A(r,  t) + A(r ,  t ) . [~]  + - -  A2(r ,  t) 

• 2rn 2 

ie 

2m 
{([Bx(r, t) +/By(r, t)]v + Bz(r, t)u)Pu 

+ ([Bx(r, t) - iBy(r, t)] u - Bz(r, t)v)~v} (2.2.5) 

we may ascribe a 'classical' Hamiltonian to it by the correspondence principle 
-+ P, Pu ~ Pu, P~ -+ Pv and introduce the velocities ~,/f, b by the formula 

a 
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borrowed from classical analytical mechanics. In this way we obtain the 
expressions 

p = mJ? + e A  

Pu = mO (t + ~m [(Bx + iBy)v + Bzu ] 

pv  = m ° ~ + ~ m  [(Bx - i B y ) u  - B ~ ]  

331 

After substituting them into the formula 

L(Q, Q, t)=~Piqi - (Tnil +H)  
i 

for the Lagrangian (Q = (r, u, v)), we obtain the result 

L(Q, Q, t) =Lnon~(r , ~, t) + L~(Q, Q, t) 

where 

Lnono(r, ~, t) = ½mr 2 + eA(r, t).  r -  e~p(r, t) 

(2.2.6) 

(2.2.7) 

and 
• ( ie 

Lo(Q,Q,t)=m ° ½h2 +½b2 + ([(Bx +iBy)v+Bzulfi 
2m 

e 2 
+ [(Bx - iBy)u - Bzv]~)3- ~ ([(Bx + iBy)v +Bzu] 2 

+ [(Bx iBy)u Bzv]2)} (2.2.8) 
1 

(B = B(r, t)). 
Taking into account paths Q (r) (Q(0) = Qo, Q(t) = Q, t > 0) from our five- 

dimensional space Ss, we may use formula (1.1.5) to obtain the function 
G(Q, Qo, t) or, provided that A, B, ~ do not depend explicitly on time, the 
formula 

C(Q, Qo, ~) = 2 f  (~) 
Q,~ 

f ~ Q ( r )  exp {fdrL (Q(r), iQ(r)}, 
Qo,0 o 

Q(o) = Qo, Q(fl) = Q, ~ > 0 (2.2.9) 

Let us assume that r = t/N> 0 is an infinitesimal quantity and Qi, Q]+I 
are two points from Ss;] = O, 1 , . . . ,  N -  1. Then, for any time interval 
(jr,  ( j  + 1)r), we define the following approximate expression for the function 
G(Q]+ 1, Qi, r): 
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m3/2mO 
G(Qj+ 1, Q], r) - (2rrri)S/Z 

exp [i. (½m (rJ+ 1 - r/)2 + eA(½(rj+l + r J)) "(r/+ 1 -- r J ) r  

31 [. 0 ( ! ( / / ] + 1 - - / / ] )  2 1 (VJ+I --V]) 2 
- e .  ~o(rj)r,,j exp[zm / 2  r t-2 r 

ie 
+ -  ([(B~ (rj) + / g y ( r j ) ) ~ j  + B=(r j )u j ]  (uj+~ - u i)  

2m 

+ [(B:,(r j)  - iBy ( r j ) ) u j  - & (r j )  vl] (vj + t - vj)) 

e 2 
- 8m 2 ([(Bx(rj) + iBy(r/))v) +Bz(rj)uj] 2 + [(Bx(rl) 

- iBy(r i ) )ul-Bz(r l )v i]2)r}]  

m3/2mO 
- (2~ri)5/z exp (iS], j + 1 ) (2.2.10) 

(cf. formulae (1.1.2) and (1.1.4). In writing the action S L ] +1 in formula 
(2.2.10), we have not strictly adhered to the interpolation scheme (1.1.4) 
(although we might use it!) and have replaced ½ (q j+l + qi) by q/where 
possible; onIy the replacement of A(½ (ri+ 1 + ri)) by A(rj) would be erroneous, 
as was shown by Feynman (1948). For brevity, we have not written explicitly 
the time argument (which may be taken as/r) in the quantities A, B, ~0 occur- 
ring in formula (2.2.10). (Moreover, to write jr in A, B, ~ might be somewhat 
confusing since jr is not an infinitesimal quantity for most values of j(0 < j < N) 
despite that r is!) 

As is seen from expression (2.2.10), the integrals (2.1.27) (where we take 
b/j, t~] ~ UO,//0, b/] +1, Vj+l -+/'/, V) are not dependent on m °. Neither will the 
infinitely multiple integral 

ex~ 

G(Q, Qo, t) = lim ~S " " I  d s Q I " ' ' d s Q N - 1  
N - - ~  o o  _ ¢ ~  

G(Q, QN- 1, t /N ) . . .  G(Q1, Qo, t/N) (2.2.11) 

inserted in formulae (2.1.27) give a dependence on m °. Expression (2.2.11) is 
representing the desired path integral (1.1.5) with paths Q(r) = (r(r), u(r), 
v(r)) starting from Qo = (ro, Uo, Vo) at r = 0 and ending in Q = (r, u, v) at r = t. 
The integration with respect to the spatial and spin coordinates on the right- 
hand side of formula (2.2.1 t) may be performed in arbitrary order. The fulfil- 
ment of the initial condition (2.1.24) has been guaranteed by the choice of 
the factor in front of the exponential in expression (2.2.10). 

The proof that formulae (2.2.10) and (2.2.11) give the correct function 
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G(Q, Qo, t) which, when inserted into the integral equation (2.1.23), must 
give the Pauli equation, is straightforward and repeats Feynman's proof for 
his spinless Green function (i.e. propagator, Feynman, 1948). 

Let us write equation (2.1.23) for an infinitesimal time ~- as follows. 

• (Q, t + r)= f dS6 QG(Q, Q -  6Q, ~). ~ ( Q -  6Q, t) (2.2.12) 

where ,Is EL2 (cf. (2.1.18)) and G is taken in the form (2.2.10) with QI -+ Q - 
6Q, Qj+I ~ Q. As is seen from expression (2.2.10), only timse points Qo = 
Q - 6Q give a substantial contribution to the value of the integral on the right- 
hand side of equation (2.2.12) while lie at an infinitesimally small distance 
from the point Q, i.e. 11Q - Qo I1 = II 6Q It -+ 0 if ~- -+ 0. In the kernel G(Q, Q - 
6Q, r) of equation (2.2.12), therefore, it is sufficient to leave over the terms 
16qi Jz/r in the exponent and carry out the MacLaurin development of the 
remaining exponential with respect to 16qi [ and r. Similarly, we may also 
develop the function ~(Q, Q - 6Q, t) with respect to 6Q. As follows from 
definition (2.1.18), the development of the function ~(Q, Q - 6Q, t) will not 
yield operators ~2/~u2, ~2/~v2, etc. (a result which is only a confirmation of 
the fact that the operator Tnil added deliberately to the Hamiltonian (2.1.22) 
has indeed been nilpotent). The left-hand side of equation (2.2.12) gives a 
development ,It(Q, t) + O~(Q, t)/Ot, r + . . ,  and on the right-hand side there 
are Gaussian integrals which are easy to calculate. After comparing the pro- 
portionality coefficients at ~" obtained in this way on both the sides of 
equation (2.2.12), one can directly persuade oneself that equation (2.2.12) 
has given the differential equation (2.1.21) with the purely differential 
Hamiltonian (2.1.22) and without any nilpotent operator. (Of course, we may 
add a nilpotent operator to H if we wish to and such a formal addition has 
actually made our path-integral formulation possible.) 

Thus, we have proven that if the initial function 'tJ(Q, 0) is of the form 
~l(r ,  0)u + ~2(r, 0)v, then the function 'IffQ, t) given by the transformation 
(2.1.23) with the function G(Q, Qo, t) calculated as the path integral (2.2.11) 
is also of the form 61(r, t)u + ~2 (r, t)v (i.e. ~(Q, t )E  L 2) for all the time 
instants t > 0. 

The spin-dependent portion of the action S], i + x, i.e. the expression { } in 
formula (2.2.10), is dependent quadratically on the variables u, v. If the action 
is quadratic, then, as is well-known (Feynman & Hibbs, 1965), it is possible to 
transform the path integral into a product of factors which can be evaluated 
separately. Occasionally, as in the case of the harmonic oscillator, one may 
even succeed in finding a suitable replacement of the product by a simple 
function. Therefore, for a given magnetic field B(r, t) and a given spatial path 
r(r) (r(0) = ro, r(t) = r), one may expect the solvability of the condition spin- 
dependent path integral 

Go {B(r(r), r), Q, Qo, t} = jff~{B(r(r), r), r, ro, t} 
b/ V~ t t 

f f m,(~)m~(~) exp[i f drL,,(Q(r), O(r), r)] (2.2.13) 
U o Vo, 0 0 
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subjected to the condition 

G~ (8(r( r ) ,  r), Q, Qo, +0)  = ~ (u - Uo)~ (~ - Vo) (2.2.14) 

Unfortunately, the path integral (2.2.13) in general, surely cannot be trans- 
formed into a simple function since, for a general field B(r, t) :/: const., the 
standard method of  calculating path integrals with quadratic actions, when 
used for the path integral (2.2.13), leads to a linear second-order differential 
equation with non-constant coefficients and, as is well known, solutions of  
such equations cannot always be written down in an analytical form. More- 
over, one must be very careful with the standard method since it leads to 
'classical paths'  (ue(r), ve(r)) which do not tie in the space Ss, as the inter- 
mediate values of  the variables ue(r), vc(r) are, in general, complex although 
the terminal values Uo, Vo, u, v, according to our definition, are real. 

Therefore, within the framework of the present formulation, we must be 
content with the final result in the form 

I/[ G(Q, Qo, t) =j f f ( t )  f N Q ( r )  exp i dr ½m~2(r) + eA(r(r) ,  r ) . i ( r )  
Qo, O 

+ mO{½it2(r) + ½b2(r) + ie e~(r( r ) ,  T) ~ m  ([(Bx(r(r),  r) 

+ iBy(r(r),  r ) )v(r)  + Bz(r(r) ,  r)u(r)] / t (r)  + [(Bx(r(r), r) 

-- iBy(r(r), r))u ('c) - Bz(r(r) ,  "r)v (7-)] b (7") 

e 2 
- 8m 2 ([(Bx(r(r),  r) + iBy(r(r), r))v(r)  + Bz(r(r),  r)u(r)] 2 

G(Q, Qo, + O ) = S S ( Q - Q o ) ,  r n ° > O  (2.2.15) 

3. Concluding Remarks 

In principle, there are no obstacles to generalise our path-integral formu- 
lation to a more complicated case of  n particles with spin. We may define a 
space L2 x . . .  x L2 (an n-fold direct product of  L2) spanned by the functions 

and use a nflpotent operator as a sum of operators (2.2.1), etc. 
As was mentioned in the Introduction, it is also possible to do a minor 

complication of our formulation consisting of using complex-valued variables 
u = ul  + iu2, v = v 1 + iv 2 instead of  the real ones. Then we may assume that if 
rotations are applied, then the variables u, v are subject to transformations like 
components of  a spinor. (Of course, we must not require the fulfilment of  the 
normalisation condition l u21 + l v21 = 1 since Ua, u2, va, vz must be allowed to 
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represent arbitrary real numbers.) Such a formulation (whose description in 
more detail is intended to be presented in a further paper) has the advantage 
that the positively defined nilpotent operator 

1 [ ~ 2  32 ~2 c 3 2 ,  
c = ~ - - + - - + - - + ~ )  (3.1) 

Tnil 2m 0 OUl 2 0u22  0v12 

(m ° > 0) is invariant with respect to the group of rotations. 
Furthermore, the idea of using a second-order positively-defined nilpotent 

operator (say, of the type of the Laplace operator) can be applied even to 
other equations which need not be related just to spin. In this manner, for 
instance, first-order equations can be completed by such an operator (after 
defining a space L2, with respect to which this operator must be nilpotent) 
and thus even solutions of first-order equations (or of their systems) can be 
represented by path integrals. (The relativistic quantum-mechanical Dirac 
equation seems to be the most honorific case in this regard.) Therefore, the 
idea of nilpotent operators, as the author believes, can invoke the spirit of 
stochastic theory in a novel manner in a new class of problem besides the 
hitherto developed stochastic theories of the Brownian motion or potential. 

Much is dependent on improving the numerical methods (of a Monte-Carlo 
type, say) for calculating path integrals like our integral (2.2.15). In the 
Appendix we present an analytical solution of this integral but in such a case 
when only the magnetic field B is both uniform in space and constant in time, 
Such a calculation serves, of course, merely as a verification of our general 
path-integral formulation. Otherwise, for a constant uniform magnetic field, 
one could use a much simpler path integral than ours. Namely, one could 
orientate the z-axis, as usual, into the direction of the magnetic field B and 
use the two-component Lagrangian 

L(r(r) ,~(r))  [½rnr2(r) + e A ( r ( r ) ) . ~ ( r ) ] I -  e [BI  = Oz (3.2) 
2m 

in the Feynman path integral (1.1.5). No problems would arise in this case due 
to the presence of spin since the unit matrix I and the Pauli matrix az are 
commuting. The matrix Green function would simply be separated into two 
independent scalar Green functions. 

Therefore, one might raise an objection whether it is at all useful to calcu. 
late the normal Zeeman effect in such a way, as is shown in the Appendix. The 
author hopes that it is, since the experience gained from such a path-integral 
calculation gives a springboard for a more ambitious task which might be dif- 
ficult to solve within the framework of the traditional operator formulation of 
quantum mechanics. The author has in mind one particular kind of task which 
may occur, say, in the theory of magnetically disordered semiconductors: 
where electrons move in a randomly distributed magnetic field, i.e. in a random 
vector potential. For this case, the very non-operator nature of the path integral 
(2.2.15) is a substantial advantage which, as in the case of a scalar random 
potential (cf. e.g. Bezfik, 1970, 1971 ; Papadopoulos, 1974), might eventually 
allow us to derive new results. 
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Appendix 

Our aim is to present a path-integral calculation of the spin-dependent part 

Zo(fl) = f f  duodv o C~(u,v, Uo, Vo,[J) (A.1) 

(cf. (2.1.29)) o f  the partition sum (2.I .17) (13 = 1/kBT > 0) provided that the 
magnetic field B is uniform in space and constant in time. The basic problem 
is to calculate the path integral 

Co(u,v, uo, vo,~)=J¢'~(t3) f f  ~u( ' c )Nv(r )exp  d r ~ o  (A.2) 
~o OO~ 0 

where the function ~ o  is defined (cf. (2.2.9) and (2.2.13)) by the expression 

~eo = Lo(u (~), v (r), ii~ (~), i~ (r)) 

= - ½ { / t z 0  -) + b~(r) + 2co([(bx + iby)v(r) + bzu('c)] i~(r) 

+ [ ( b ~  - iby)u (~) - bzv ( r ) ]  ~ (~)) 
+ ~2( [ (b  x + iby)v(r)+ bzU('C)]2+ [(bx - iby)U(T) -- bzv(';)] 2) ) 

(i.3) 
For elegance, we have introduced the quantity 6o = eB/2m (sign w = sign e, 
[ ~  being the Larmor frequency in units when h = c = 1) and the directional 
cosines bx, by, bz of the vector B (1 b ] = 1, B = Bb). Obviously, the spin- 
dependent part of the function G(Q, Qo, t), i.e. function (2.2.13), is related 
to (A.2), Go(u, v, Uo, Vo, t) = Co(u, v, do, Vo, it), t > 0 (cf. (2.1.25)). The paths 
U(T), v(r) are continuous and u(0)  = Uo, v(0) = Vo, u ~ )  = u, v(t~) = v. In agree- 
ment with condition (2.1.26), we must required the fulfilment of  the condition 

Ca(u, v, Uo, Vo, +0) = 6 (u - Uo)6 (v - Vo) (A.4) 

Then the function (A.2) is the finite solution of the equation 

~co(u, v, uo, vo, ~) 1 [ ~ + ~ 
~ = ~ \~-~ a-~-) co(,,, ~, . o ,  ~o, ~) 

+ o3{[(bx + iby)v + bzu] ~ + 8u [(bx - iby)u 

× C~(u, v, Uo, Vo, IJ) 

for t3 > 0 (cf. (2.1.22), (2.2.1) and (2.2.3); we have used m ° = 1 here). 
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The partition sum Zo(~) must not depend on the orientation of  the mag- 
netic field B. Therefore, we may choose an orientation of B for which the 
path-integration of C~ is simple. If we choose I bz I = 1 (i.e. bx = by = 0), then 
the integrations with respect to u (r) and v (r) are independent; such a case, 
however, is not so interesting to the verification of our path-integral formu- 
lation. A more elegant path integration concerns the choice by = 1 (bx = bz = 0), 
we will only confine ourselves to this case. The Lagrangian ~L~fo is reduced to 
the form 

~ o  = _ ½ [u 2(r)  + b 2 (r)]  + i ~  [u (r)~ (~) - v (r )u  (~)1 

+ ½w 2 [u2(r) + v2(r)] (A.6) 

and the function Co satisfies the equation 

= -  + C~,(u, v, uo ,  vo,  ~) 
~[3 2 

+ iw  v ~u - u Ca(u, v, Uo, Vo, ~) (A.7) 

As will be seen, it is advantageous to introduce the complex-valued paths 

×(~-) = u ( r )  + iv(r)  (A.S) 

Xo = Uo + ire, X = u + iv. In accordance with the general scheme of calculating 
path integrals with quadratic Lagrangians (Feynman & Hibbs, 1965), we define 
the 'classical path' Xc(r) by the condition that the contribution in the action 
fg  dr..~a involving products X* • 5Xc, Xc .  5X* has to vanish if one inserts 

×(r) = ×~(r) + 8×(r) 

into ~o .  Such a condition implies the equation 

(A.9) 

2c(r) + 2~2~ (r) + ~ z × ~ ( r )  = 0 

xc(o)  = Uo + ivo, x~(~) = u + iv 

(A.10) 

(A.1t) 

and the 'classical action' is then 

21~ ° So,c = f dr  ~ a , c  = - ½  X*(~)X c(r)I~0 - 7 xc(r) l 
0 

(A.12) 

which gives the (m v)-dependence of the function Cc,(u, v, uo, Vo, ~). To cal- 
culate the full ~-dependence of Co(u, v, u o, v o, ~), we must still perform the 
path integration with respect to the closed paths 5X(r), 

8 ×(o)  = ~ ×(~)  = o (A. 13) 
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In this case, we can write the 'action',  after integrating its 'kinetic-energy' term 
by parts, in the form 

, [1 d 2 d ] 

o 

which suggests that it is natural to use the eigenfunctions xn(r)  of  the 
equation 

}~ n (7) + 2 oo2 n (7) + 6o 2 X n (7) = -- Xn =Xn (r) (a.  14) 

defined with respect to the conditions Xn(O) = Xn(/3) = 0, and develop the 
closed paths 6x(r )  in the series 

8x(r) = E a~x( r )  (A.15) 
n 

It is nice to state here that the eigenvalues - X n  2 of  equation (A.14) are 
independent of  00, 

Xn = 7rn//3 (A.16) 

Therefore, we must obtain the same value of Co(O, O, O, O,/3) as in the case 
when the magnetic field is absent, i.e. 

C~ (0, 0, 0, 0,/3) = (2~/3)- 1 

Thus, after inserting the solution 

xc(r) = (Uo + ivo)(1 - r/~) exp ( -00r )  + (u + iv)(r//3) exp[00(~ - r)] 

(A.17) 

of equation (A. 10) into the action (A. 1 2), we are obtaining the final result 

Ca(u, v, Uo, Vo, t3) = (27r/3) -1 exp[Sa,c(u,  v, Uo, Vo,/3)] 

= (2rr/3) -1 exp (-(1/2/3)[(u0 - u cosh 00/3 - iv sinh 00/3) 2 

+ (% - v cosh 00/3 + iu sinh 00/3) 2] } 

= (27r/3) -1 exp {-(1/2/3)[(u - u 0 cosh 00t3 + ivo sinh 00/3)2 

+ (v - v o cosh 00/3- iv o sinh co/3)z] } (A.18) 

which is the correct solution of  equation (A.7) satisfying condition (A.4). 
The direct substitution of  this function into formula (A. i) gives the result 

Za(/3) = 2 cosh oot3 = exp (o0/3) + exp (-00/3) (A.19) 

which means nothing but the partition sum over the two energies E1 = I co [ = 
] e [ B /2m ,  E2 = - I 0 0  [ = - [ e [B/2rn representing the normal Zeeman splitting 
in the magnetic field B provided that no spin-orbital interaction is present. In 
conclusion, it should be stressed that our Lagrangian has not been due to 
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something spinning classically (like a top). On the contrary we have accepted 
the validity of the Pauli equation at the very outset and have only elaborated a 
new path-integral grammary for it. 
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